Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
JMIR Public Health Surveill ; 7(6): e27888, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-2197908

ABSTRACT

BACKGROUND: Prior to the COVID-19 pandemic, US hospitals relied on static projections of future trends for long-term planning and were only beginning to consider forecasting methods for short-term planning of staffing and other resources. With the overwhelming burden imposed by COVID-19 on the health care system, an emergent need exists to accurately forecast hospitalization needs within an actionable timeframe. OBJECTIVE: Our goal was to leverage an existing COVID-19 case and death forecasting tool to generate the expected number of concurrent hospitalizations, occupied intensive care unit (ICU) beds, and in-use ventilators 1 day to 4 weeks in the future for New Mexico and each of its five health regions. METHODS: We developed a probabilistic model that took as input the number of new COVID-19 cases for New Mexico from Los Alamos National Laboratory's COVID-19 Forecasts Using Fast Evaluations and Estimation tool, and we used the model to estimate the number of new daily hospital admissions 4 weeks into the future based on current statewide hospitalization rates. The model estimated the number of new admissions that would require an ICU bed or use of a ventilator and then projected the individual lengths of hospital stays based on the resource need. By tracking the lengths of stay through time, we captured the projected simultaneous need for inpatient beds, ICU beds, and ventilators. We used a postprocessing method to adjust the forecasts based on the differences between prior forecasts and the subsequent observed data. Thus, we ensured that our forecasts could reflect a dynamically changing situation on the ground. RESULTS: Forecasts made between September 1 and December 9, 2020, showed variable accuracy across time, health care resource needs, and forecast horizon. Forecasts made in October, when new COVID-19 cases were steadily increasing, had an average accuracy error of 20.0%, while the error in forecasts made in September, a month with low COVID-19 activity, was 39.7%. Across health care use categories, state-level forecasts were more accurate than those at the regional level. Although the accuracy declined as the forecast was projected further into the future, the stated uncertainty of the prediction improved. Forecasts were within 5% of their stated uncertainty at the 50% and 90% prediction intervals at the 3- to 4-week forecast horizon for state-level inpatient and ICU needs. However, uncertainty intervals were too narrow for forecasts of state-level ventilator need and all regional health care resource needs. CONCLUSIONS: Real-time forecasting of the burden imposed by a spreading infectious disease is a crucial component of decision support during a public health emergency. Our proposed methodology demonstrated utility in providing near-term forecasts, particularly at the state level. This tool can aid other stakeholders as they face COVID-19 population impacts now and in the future.


Subject(s)
COVID-19/therapy , Delivery of Health Care , Health Planning/methods , Hospitalization , Intensive Care Units , Pandemics , Respiration, Artificial , COVID-19/mortality , Equipment and Supplies , Forecasting , Hospitals , Humans , Length of Stay , Models, Statistical , New Mexico , Public Health , SARS-CoV-2 , Surge Capacity
2.
PLoS Comput Biol ; 18(6): e1010115, 2022 06.
Article in English | MEDLINE | ID: covidwho-1892270

ABSTRACT

Infectious disease forecasting is of great interest to the public health community and policymakers, since forecasts can provide insight into disease dynamics in the near future and inform interventions. Due to delays in case reporting, however, forecasting models may often underestimate the current and future disease burden. In this paper, we propose a general framework for addressing reporting delay in disease forecasting efforts with the goal of improving forecasts. We propose strategies for leveraging either historical data on case reporting or external internet-based data to estimate the amount of reporting error. We then describe several approaches for adapting general forecasting pipelines to account for under- or over-reporting of cases. We apply these methods to address reporting delay in data on dengue fever cases in Puerto Rico from 1990 to 2009 and to reports of influenza-like illness (ILI) in the United States between 2010 and 2019. Through a simulation study, we compare method performance and evaluate robustness to assumption violations. Our results show that forecasting accuracy and prediction coverage almost always increase when correction methods are implemented to address reporting delay. Some of these methods required knowledge about the reporting error or high quality external data, which may not always be available. Provided alternatives include excluding recently-reported data and performing sensitivity analysis. This work provides intuition and guidance for handling delay in disease case reporting and may serve as a useful resource to inform practical infectious disease forecasting efforts.


Subject(s)
Communicable Diseases , Influenza, Human , Communicable Diseases/epidemiology , Computer Simulation , Forecasting , Humans , Influenza, Human/epidemiology , Models, Statistical , Public Health , United States
SELECTION OF CITATIONS
SEARCH DETAIL